

Ce document a été mis en ligne par l'organisme FormaV®

Toute reproduction, représentation ou diffusion, même partielle, sans autorisation préalable, est strictement interdite.

CORRIGE

Ces éléments de correction n'ont qu'une valeur indicative. Ils ne peuvent en aucun cas engager la responsabilité des autorités académiques, chaque jury est souverain.

CORRIGE BOBINEUSE
B.T.S Conception et Industrialisation en Microtechniques
U.32-Sciences Physiques

1.1) $\overrightarrow{F_{12}} \qquad \overrightarrow{F_{1}} = \overrightarrow{F_{T1}} + \overrightarrow{F_{T2}} \qquad F_{1} = 2.F_{T1}.\cos\alpha \qquad \alpha = 45^{\circ}$ $F_{1} = 2 \cdot F_{T} \cdot \frac{\sqrt{2}}{2} \qquad F_{1} = F_{T} \cdot \sqrt{2}$	
$\overrightarrow{F_1} \cdot a + \overrightarrow{F_2} \cdot b = \overrightarrow{0}$ $F_2 = F_1 \cdot \frac{a}{b} = F_1 \cdot \frac{51}{34}$ $F_2 = 1,5 \cdot F_1$	1
1.3) $F_2 = 1.5 \cdot F_T \cdot \sqrt{2}$ $F_2 = 1.5 \cdot 150 \cdot \sqrt{2} = 318.2 \text{ N}$	0,5
2.1) Lorsque F ₂ augmente R ₁ et R ₃ augmentent, R ₂ et R ₄ diminuent	0,25
$2.2) R_1 = R_0 + \Delta R$	0,25
$R_2 = R_0$ - ΔR $R_3 = R_0 + \Delta R$ $R_4 = R_0$ - ΔR	0,5
2.3.1) $Um = \frac{U_0}{4} \cdot \frac{\Delta R0 - (-\Delta R0) + \Delta R0 - (-\Delta R0)}{R0} = U_0 \cdot \frac{\Delta R}{R0}$	0,5
2.3.2) Um = $U_0 \cdot K \cdot \frac{\Delta l}{l0}$	0,25
2.3.3) Um = $U_0 \cdot K \cdot 5, 2 \cdot 10^{-6} \cdot F_2 = 1, 1 \cdot 10^{-5} \cdot U_0 \cdot K \cdot F_T$	0,5
2.3.4) Um = $1,1 \cdot 10^{-5} \cdot U_0 \cdot K \cdot F_T = 1,1 \cdot 10^{-5} \cdot 12 \cdot 2,05 \cdot 150 = 0,04 \text{ V}$	0,25
2.3.5) $S = \frac{0,0406}{150} = 0.271 \text{mV/N}$	0,5
2.3.6) Equation de la maille : $U_{CB} - Um - U_{DB} = 0$ soit $Um = U_{CB} - U_{DB}$	0,25
2.4.1) $U_{CB} - \epsilon - U_{E1} = 0$ (montage suiveur) montage amplificateur linéaire (contreréaction de la sortie sur l'entrée inverseuse) donc $\epsilon = 0$ donc $U_{E1} = U_{CB}$ De la même façon $U_{E2} = U_{DB}$	0,75
2.4.2) Montage amplificateur linéaire (contre-réaction de la sortie sur l'entrée inverseuse) donc $\epsilon=0$ $\epsilon=V+$ - V- soit $V+=V i_+=i=0$	1,5

$V + = \frac{R2}{R1 + R2} \cdot U_{EI}$ (pont diviseur de tension)	
$V = \frac{R2}{R1 + R2} \cdot U_{E2} + \frac{R1}{R1 + R2} \cdot U_{E2} + \frac{R1}{R1 + R2} \cdot U_{E2}$ (th de superposition)	
$V+=V-R2.U_{E1}=R2.U_{E2}+R1$. U_{S} $U_{S}=\frac{R2}{R1}\cdot(U_{E1}-U_{E2})$	
Montage amplificateur différentiel	
$2.4.3 \text{ Us} = A \cdot (U_{CB} - U_{DB}) = 100 \cdot U_{DB}$	0,5
$Us = 100 \cdot 0,271 \cdot 10^{-3} \cdot F_{T} = 0,0271 \cdot F_{T}$	0,25
3.1.1) Le moteur fonctionne en moteur.	0,2 0
3.1.2) $T_2 = P \cdot \frac{d}{2} = m \cdot g \cdot \frac{d}{2} = 15 \cdot 10 \cdot 0, 1 = 15 \text{ N.m}$	0,25
$\Omega_2 = \frac{\mathbf{v}}{\frac{\mathbf{d}}{\mathbf{d}}} = \frac{2 \cdot \mathbf{v}}{\mathbf{d}} = \frac{3}{0.2} = 15 \text{ rad} \cdot \text{s}^{-1}$	
2	0,5
3.1.3) $P_2 = T_2.\Omega_2 = 15.15 = 225 \text{ W}$ $P_1 = P_2 / \eta_r = 225 / 0.75 = 300 \text{W}$	
3.1.3) $P_2 = I_2 \Omega_2 = 15.15 = 225 \text{ W}$ $P_1 = P_2 / \eta_r = 225 / 0.75 = 300 \text{ W}$ 3.1.4) $\Omega_1 = \Omega_2 / r$ $\Omega_1 = 15 / 0.1 = 150 \text{ rad.s}^{-1}$ $n_1 = 30. \Omega_1 / \pi = 1432,4 \text{ tr.min}^{-1}$ 3.1.5) $E = 105 \cdot 1,432 = 150,4 \text{ V}$ 3.1.6) $T1 = P1 / \Omega_1 = 300 / 150 = 2 \text{ N.m}$	0,5
$n_1 = 30$. $\Omega_1 / \pi = 1432,4 \text{ tr.min}^{-1}$	0,5
3.1.5) E = 105 . 1,432 = 150,4 V	
3.1.6) $T1 = P1 / \Omega_1 = 300 / 150 = 2 \text{ N.m}$	0,5
3.1.7) $Pem = P1 = 300W$	0,5
3.1.8) $Pem = E.I I = Pem/E I = 300/150, 4 = 2A$	0,25
3.1.9) $U = E + R.I = 150,4 + 2.5$ $U = 160.4V$	0,75
3.1.10) Pa = U.I = 160,4 .2 = 320,8 W $\eta_{M} = Pu/Pa = 300/320,8 = 0,93$ $\eta_{G} = \eta_{M}$. $\eta_{r} = 0,93$. $0,75 = 0,7$	0,5
3.2.1) La charge entraîne le moteur en rotation. Le moteur fonctionne en génératrice.	0,5
	0,5
3.2.2) $T_2 = \text{m.g.d/2}$ inchangé $T_2 = 15 \text{ N.m}$ $\Omega_2 = \text{v/d/2} = 2\text{v/d} = 15 \text{ rad.s}^{-1}$ inchangée $P_2 = T_2$. $\Omega_2 = 225 \text{W}$ inchangée	
3.2.3) $P_1 = P_2$. $\eta_r = 225$. $0.75 = 168,75$ W $\Omega_1 = 15 / 0.1 = 150$ rad.s ⁻¹ $T1 = P1 / \Omega_1 = 168,75 / 150 = 1,125$ N.m	0,5
3.2.4) E = 105 .1,432 = 150,4 V	0,5
3.2.5) $Pem = P_1 = E.I$ $I = 168,75/150,4 = 1,12A$	0,5

3.2.6) $U = E - R.I = 150,4 - 1,12.5 = 144,8V$	0,5
4.1) Système en boucle fermée. Chaîne directe : A_1 , A_2 , H_M Chaîne de retour : K_{DT} , K_A	0,5
4.2) Grandeur d'entrée : Uc Grandeur de sortie : n	0,5
Grandeur de retour : Um	0,5
4.3) ε = Uc – Um Pour que l'asservissement soit précis il faut que ε tende vers 0.	
 4.3) ε = Uc – Um Pour que l'asservissement soit précis il faut que ε tende vers 0. 4.4.1 et .2) A1 doit être grand. Une valeur très grande de A1 peut entraîner une instabilité du système. 	0,5
4.5) $U_{DT} = 30V$ pour $n = 1500$ tr/min et alors Um doit être égale à $10V$ $Um = K_A$. U_{DT} $K_A = 1/3$	0,5
4.6) $Um = V + = \frac{R5}{R5 + R6} \cdot U_{DT} = K_A \cdot U_{DT} K_A = \frac{R5}{R5 + R6} = \frac{1}{3}$	0,5
$3.R5 = R5 + R6$ $R5 = R6/2 = 5 k\Omega$	0,5
$3.R5 = R5 + R6$ $R5 = R6/2 = 5 \text{ k}\Omega$ $4.7)$ $n = 850 \text{ tr/min}$ $U_{DT} = 20.0,85 = 17 \text{V}$ $U_{C} = U_{M} = 17/3 = 5,66 \text{V}$	0,5
cujets Re	
865	
alale	